Derivation of the Intriligator-Leigh-Seiberg linearity principle from Dijkgraaf-Vafa

Yuji Tachikawa (Univ. of Tokyo, Hongo)

December 20, 2002 based on hep-th/0211274

- 1. Introduction
- 2. Brief review of ILS
- 3. Brief review of DGLVZ
- 4. ILS from DV
- 5. Conclusions

1. Introduction

the Dijkgraaf-Vafa proposal

Duality between $d = 4, \mathcal{N} = 1$ SYM theories and (old) matrix models:

- Gauge Theory : N_c Finite and Fixed the bare superpotential $W_{\text{tree}}(\Phi)$ \downarrow the effective superpotential $W_{\text{eff}}(S)$ (Φ : adjoint matter, $N_c \times N_c$
- S: gaugino condensate $(1/32\pi^2)$ tr $W^{\alpha}W_{\alpha}$)
- Matrix Model : Planar Limit the action $W_{\text{tree}}(\Phi)$ $\downarrow \downarrow$ the free energy $\mathcal{F}(S)$ ($\Phi: M \times M$ matrix, S: 't Hooft coupling) $M \to \infty$ with S fixed
- The correspondence is

$$W_{\rm eff}(S) = N_c {\partial {\cal F}\over\partial S}$$

and it was conjectured to be EXACT

First Indication — Factorization * Matrix Model Side

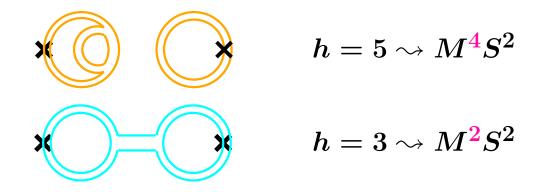
• Consider a diagram with V vertices, E propagators, h index loops with Euler number χ

 $V - E + h = \chi$

• (Propagators) $^{-1}$ and couplings $\propto M/S$

diagram
$$\propto M^h \left(rac{M}{S}
ight)^{V-E} = M^{\chi}S^{V-E}$$

In the planar limit $M \to \infty$, planar diagrams dominate and correlation functions factorize: (E = 5, V = 4)



*****Gauge theory side

VEVs of the lowest components of gauge invariant chiral superfields factorize:

 $\langle \Phi_1(x) \Phi_2(y)
angle = \langle \Phi_1(x)
angle \langle \Phi_2(y)
angle$

It is because

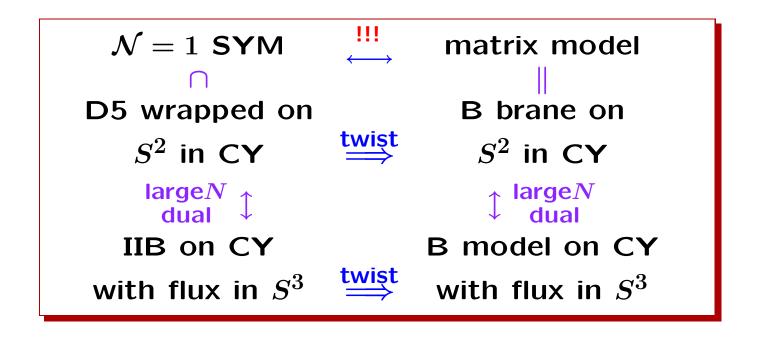
- $\partial_\mu \Phi_1(x) = \{ar{D}, [D, \Phi_1(x)]\}$ is $ar{D}$ -exact.
- Hence,

$$egin{aligned} \partial_{\mu}\langle\Phi_1(x)\Phi_2(y)
angle&=\langle\{ar{D},[D,\Phi_1(x)]\}\Phi_2(y)
angle\ &=\langle[D,\Phi_1(x)]\{ar{D},\Phi_2(y)\}
angle\ &=egin{aligned} 0 \end{aligned}$$

- ullet Next, Take $|x-y|
 ightarrow\infty$
- Finally use the Cluster Property.

Stringy ideas behind the proposal

DV arrived this proposal by chasing the following dualities:



Checking the proposal

To calculate $W_{\mathrm{eff}}(S)$, one usually combines

• exact results (the Seiberg-Witten curve or the Affleck-Dine-Seiberg superpotential), which describe the system without the deformation $W_{\text{tree}}(\Phi)$.

• the linearity principle of Intriligator-Leigh-Seiberg, which tells the response of the system to $W_{\text{tree}}(\Phi)$. (more on this in section 2.)

Extending to the fundamental flavors
$$W_{\text{eff}}(S) = N_c \frac{\partial \mathcal{F}_{\text{sphere}}}{\partial S} + \mathcal{F}_{\text{disk}}.$$

It is now known that diagrams with more than two boundaries do not contribute. Field-theoretic derivations of the proposal By now, we have two derivations of the conjecture:

• Dijkgraaf-Grisaru-Lam-Vafa-Zanon

By purterbatively integrating out the matter superfields in an external gaugino condensate

(more on this in section 3.)

• Cachazo-Douglas-Seiberg-Witten

By combining the generalized Konishi anomaly relations and factorization of vevs of chiral superfields

₩

We can study the dynamics of $\mathcal{N} = 1$ SYM systems using DV! As an example, we showed from DV the ILS linearity principle. 2. Brief Review of ILS

From the bare lagrangian

$$\mathcal{L}_{ ext{bare}} = \int d^4 heta \Phi^\dagger e^V \Phi + \int d^2 heta W(\Phi,g_i) + c.c.$$

To the low energy superpotential $\int d^2 \theta \ W_{
m eff}(\Phi)$

holomorphy

Coupling constants g_i as the vevs of chiral superfields

 $\langle \\ W_{\rm eff}(\Phi) \text{ depends only on } g_i \text{ , not on } \overline{g_i}.$

symmetry

• Many classical symmetries on chiral superfields and coupling constants.

• Even anomalous symmetries are useful once one assigns charges to the dynamical scale Λ appropriately.

classical and perturbative limit

• In the classical limit $\Lambda \to 0$, $W_{\rm eff}(\Phi)$ must approach $W_{\rm tree}(\Phi)$.

• If one takes some coupling $g_i
ightarrow 0$, $W_{
m eff}$ should smoothly become $W_{
m tree}.$

 \parallel

 $W_{\rm eff}$ does not contain negative powers of Λ and g_i .

Strong constraint for possible terms in $W_{\mathrm{eff}}(\Phi)$,

fixing the form completely in some simple cases .

Example.

 $SU(N_c)$ SYM with $N_f < N_c$ pairs of quarks Q_i and \tilde{Q}_i .

• Gauge invariants are

$$T_{ij}=Q_i ilde Q_j.$$

• $W_{\text{tree}} = m_{ij}T_{ij}$ as the bare superpotential

• $SU(N_f) \times SU(N_f)$ flavor symmetry on quarks and antiquarks.

• R-charges:

• The anomaly from

$$q
ightarrow e^{-i \phi} q, \qquad \lambda
ightarrow e^{+i \phi} \lambda,$$

leads to:

$$heta
ightarrow heta + 2(N_c - N_f)\phi.$$

Because

$$\Lambda^{3N_c-N_f}\sim \Lambda_0^{3N_c-N_f}\exp\left(-rac{8\pi^2}{g_0^2}+i heta
ight),$$

the R-charge of $\Lambda^{3N_c-N_f}$ is $2(N_c-N_f)$.

 \downarrow

$$W_{ ext{eff}} = c \left(rac{\Lambda^{3N_c - N_f}}{\det T_{ij}}
ight)^{1/(N_c - N_f)} + \underbrace{m_{ij}T_{ij}}_{\swarrow},$$

the coeff. is fixed by $m \to 0$ limit.

the linearity principle

• The result can be summarized as

 $W_{eff} = \underbrace{W_{n.p.}}_{non-perturbative,} + W_{tree}$

• Various other models have this form. ILS proposed this linearity as an organizing principle.

• However, symmetry arguments are not always strong enough.

Another Example

• Consider $\mathcal{N} = 1 \; SU(N_c)$ SYM with one adjoint Φ .

- The R-charge of Λ is zero .
- Introduce the bare superpotential $m \operatorname{tr} \Phi^2/2.$

• Symmetry alone cannot exclude the corrections of the form $m\Lambda^2$.

3. Brief Review of DGLVZ

Strategy

1. Introduce an external gauge superfield. In particular, introduce a spacetime constant gaugino.

2. Perturbatively integrate out the matter superfields. $W_{pert}(S)$

3. Make the gauge superfield dynamical.

 $W_{\text{eff}}(S) =$

 $W_{VY}(S) + W_{pert}(S)$

dynamical effect from the gauge superfield

the propagator

$$\langle \Phi \Phi
angle = rac{ar{m}}{p^2 + m ar{m} + W^lpha \pi_lpha}$$

where

- p: bosonic momentum, W^{α} : field strength superfield,
 - π_{α} : fermionic momentum.

Integration of loop momenta:

$$\prod_{a=1}^l \left(\int rac{d^4 p_a}{(2\pi)^4} \int d^2 \pi_a
ight)$$

 \implies Every *l*-loop diagram carries a factor of W_{α}^{2l} .

 \implies if $W_{\alpha} = 0$, no correction to F terms.

This is the Perturbative Non-Renormalization Theorem!

What if $W_{\alpha} \neq 0$?

Origin of Planarity

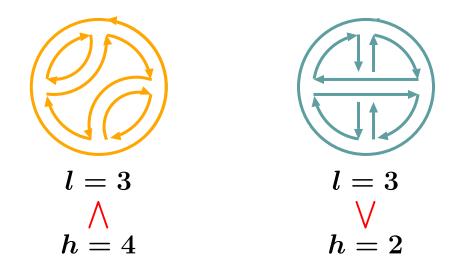
• tr W^m_{α} is \overline{D} -exact for $m \ge 3$, i.e. \sim zero in the F terms. (CDSW)

• Therefore, W_{eff} is a function of $w_{\alpha} = \operatorname{tr} W_{\alpha}$ and $32\pi S = \operatorname{tr} W^{\alpha} W_{\alpha}$.

To give non-zero requires at least l index loops.

• # of index loops h satisfies

 $h = l + 1 - 2 \times \text{genus.}$



Only **GENUS 0** diagrams contribute!

• Further tricks reveal the resulting Feynman rules are the same as those of the matrix models in the planar limit.

Making the vector superfield dynamical

This introduces the Veneziano-Yankielowicz term

$$W_{VY} = N_c S(1 - \log \frac{S}{\Lambda 3}).$$

(A: the dynamical scale of \hat{SQCD})

There are arguments against further corrections.

The total effective superpotential:

 $W_{\text{eff}}(S) = W_{\text{VY}}(S) + W_{\text{pert}}(S).$

- S is determined by the extremalization $\partial W_{\rm eff}/\partial S = 0.$
- For $W_{ ext{tree}} = \sum g_i \mathcal{O}_i$, the vevs are

$$egin{aligned} & \langle \mathcal{O}_{\pmb{i}}
angle &= rac{\partial}{\partial g_{\pmb{i}}} W_{\mathrm{eff}}(S(g_{\pmb{i}}),g_{\pmb{i}}) \ &= rac{\partial W_{\mathrm{eff}}}{\partial g_{\pmb{i}}} \Big|_{S} + rac{\partial S}{\partial g_{\pmb{i}}} rac{\partial W_{\mathrm{eff}}}{\partial S} \Big|_{g_{\pmb{i}}} &= rac{\partial W_{\mathrm{eff}}}{\partial g_{\pmb{i}}} \Big|_{S}. \end{aligned}$$

4. ILS from DGLVZ

• Introduce $W_{\text{tree}} = \sum g_i \mathcal{O}_i$.

• From DV, calculate W_{eff} and $\langle W_{tree} \rangle$ in $W_{eff} = W_{n.p.} + \langle W_{tree} \rangle$.

• Is $W_{n.p.}$ independent of g_i as a function of Λ , g_i and $\langle O_i \rangle$? This is the linearity principle.

Restriction on the matter rep. We impose:

• Vector-like , i.e. gauge-invariant mass terms can be given to all fields.

• No U(1) factor left in low energy.

• Each gauge invariants \mathcal{O}_i is a polynomial of F_a 's.

• Either the R-charge of Λ vanishes, or satisfies the Restriction (\heartsuit) :

no dynamical constraints among $\langle F_a \rangle$ $P(\langle F_1 \rangle, \langle F_2 \rangle, \cdots) = 0.$ <u>cf.</u>

 (\heartsuit) may sounds a serious restriction, but please note:

Take for example Sp(N) SYM with $2N_f$ fundamentals Q_i .

 $N+1 > N_f$: No constraints.

 $N + 1 = N_f$: A dynamical constraint

 $\mathsf{Pf}\langle Q_i Q_j
angle = \Lambda^{2N_f},$

but in this case the R-charge of Λ is zero.

 $N+1 < N_f$: Classical constraints ${\sf Pf}\langle Q_i Q_j
angle = 0,$

but all lifted dynamically.

- All satisfy the restriction we imposed.
- The $SU(N_f)$ case is quite similar.

Step 1. We show $W_{n.p.} = (N_c - N_f)S.$

• $\underbrace{V}_{\#(\text{vertices})} - \underbrace{E}_{\#(\text{propagators})} + \underbrace{L}_{\#(\text{loops})} = 1$

• V, E and L can be counted by

$$g_j \partial / \partial g_j, \quad -m_i \partial / \partial m_i, \quad S \partial / \partial S$$

• Hence for each diagram $D,$
 $\left(1 - S \frac{\partial}{\partial S}\right) D = \left(\sum m_i \frac{\partial}{\partial m_i} + \sum g_j \frac{\partial}{\partial g_j}\right) D,$
the contrib. of D to $\langle W_{\text{tree}} \rangle$

i.e.

$$\langle W_{\mathsf{tree}}
angle = \left(1 - S rac{\partial}{\partial S}
ight) \sum D$$

modulo subtlety at one-loop.

• Because $\frac{\partial W_{\text{eff}}}{\partial S} = \frac{\partial}{\partial S} (W_{\text{VY}} + \sum D) = 0,$ $\langle W_{\text{tree}} \rangle = \sum D + S \frac{\partial W_{\text{VY}}}{\partial S}.$

• Hence $W_{n.p.} = (N_c - N_f)S.$

Note $N_c - N_f$ is half the R-charge of Λ^eta

Step 2.

We show *S* is independent of g_i when expressed as a function of Λ and $\langle O_i \rangle$.

The same as inquiring whether S does not change when g_i 's are varied as long as $\langle O_i \rangle$ remain fixed . by the factorization,

the same as fixing $\langle F_a
angle$

<DERIVATION>

• From
$$\delta(\partial W_{\text{eff}}/\partial S) = 0$$
,
 $-\frac{\partial^2 W_{\text{eff}}}{\partial S \partial S} \delta S = \sum_i \delta \lambda_i \frac{\partial^2 W_{\text{eff}}}{\partial \lambda_i \partial S}$.
• Hence $\delta \langle F_j \rangle = \sum_i \delta \lambda_i G_{ij}$ where
 $G_{ij} = \frac{\partial^2 W_{\text{eff}}}{\partial \lambda_i \partial \lambda_j} - \frac{\partial^2 W_{\text{eff}}}{\partial \lambda_i \partial S} \frac{\partial^2 W_{\text{eff}}}{\partial S \partial \lambda_j} / \frac{\partial^2 W_{\text{eff}}}{\partial S \partial S}$

 $=\frac{\partial\langle O_i\rangle}{\partial\lambda_i}-\frac{\partial\langle O_i\rangle}{\partial S}\frac{\partial^2 W_{\rm eff}}{\partial S\partial\lambda_i}\Big/\frac{\partial^2 W_{\rm eff}}{\partial S\partial S}.$

• From factorization,

$$G_{ij} = \langle rac{\partial O_i}{\partial F_a}
angle G_{aj}.$$

Hence

$$\delta \langle F_j
angle = \left(\delta \lambda_i \langle rac{\partial O_i}{\partial F_a}
angle
ight) G_{aj}$$

• Similarly, one obtains

$$-rac{\partial^2 W_{ ext{eff}}}{\partial S \partial S} \delta S = \left(\delta \lambda_i \langle rac{\partial O_i}{\partial F_a}
angle
ight) rac{\partial \langle F_a
angle}{\partial S}$$

• The restriction (\heartsuit) ensures that the rank of G_{ij} is maximal.

Thus, $\delta \langle F_i \rangle = 0$ implies $\delta S = 0$.

Result

• If the R-charge of Λ vanishes, $W_{n.p.} = 0$ from Step 1.

• If it does not vanish, by the restriction (\heartsuit) and Step 2, $W_{\text{n.p.}} \propto S$ is independent of the coupling constants.

This is the linearity principle. Q.E.D.

<u>N.B.</u>

When the rank of G_{ij} is not maximal, G_{ij} contains the info of the dynamical constraints. Further, G_{ij} can be computed perturbatively!

 \downarrow

The dynamical constraints, if any, can be readily studied in this approach.

5. Conclusions

Summary

• We derived the ILS linearity principle in the framework of Dijkgraaf-Vafa

Future work

Directly related to this work:

• Lifting the restriction (\heartsuit)

More generally, interesting directions around the DV framework are:

- Direct topological twisting of $\mathcal{N}=1$ SYM theories
- Extending to matter superfields not in a vector-like representation.