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1. Introduction |

Duality between
d=4,N =1 SYM theories
and (old) matrix models:

e Gauge Theory: N, Finite and Fixed
the bare superpotential Wiee(P)
U
the effective superpotential Weee(S)
(®: adjoint matter, N, x Ng
S: gaugino condensate (1/3272) tr WOWy)

e Matrix Model : Planar Limit
J

the free energy F(S)
(®: M x M matrix, S: 't Hooft coupling)
M — oo with S fixed

e [ he correspondence is

Wesr(S) = N 07
eff — caS

and it was conjectured to be EXACT




*x Matrix Model Side

e Consider a diagram with V vertices,
E propagators, h index loops with Eu-
ler number Yy
V_.E+h=Yx
e (Propagators)~—! and couplings o M/S
J

M\ V—E
diagram o M" (?) — MXSV—E

In the planar Iimit M — oo, planar di-
agrams dominate and correlation func-
tions factorize:(E =5, V = 4)

% X h=5~ M52

% % h =3~ M2S§2



*Gauge theory side

VEVs of the lowest components of gauge
invariant chiral superfields factorize:

(P1(x)P2(y)) = (P1(x)) (P2(y))
It is because

e 9,®1(x) = {D,[D,®1(x)]} is D-exact.

e Hence,

A (®1(z)P2(y)) = ({D, [D, ®1(x)]} P2(y))
= ([D, ®1(x)[{ D, 2(y) })
=0

e Next, Take |z — y| — oo

e Finally use the Cluster Property.



DV arrived this proposal
by chasing the following dualities:

N=1SYM '  matrix model
a |
D5 wrapped on B brane on
S2 in CY twist S2 in CY
large N I large N
dual dual
IIB on CY B model on CY
with flux in $3 %% with flux in S3




To calculate Wee(S), one usually com-
bines

e exact results (the Seiberg-Witten curve
or the Affleck-Dine-Seiberg superpoten-
tial ), which describe the system without
the deformation Wiree(P).

e the linearity principle of Intriligator-
Leigh-Seiberg, which tells the response
of the system to Witee(®P).

(more on this in section 2.)

fsphere
0S

It is now known that diagrams with more

than two boundaries do not contribute.

0
Wesr(S) = Ne + Fdisk-



By now, we have two derivations of the
conjecture:

e Dijkgraaf-Grisaru-Lam-Vafa-Zanon
By purterbatively integrating out the mat-
ter superfields in an external gaugino con-
densate

(more on this in section 3.)

e Cachazo-Douglas-Seiberg-Witten

By combining the generalized Konishi
anomaly relations and factorization of vevs
of chiral superfields

(%
We can study the dynamics of N = 1

SYM systems using DV!
As an example, we showed from DV the
ILS linearity principle .



2. Brief Review of ILS |

From the bare lagrangian
Lpare = /d40<I>TeV<I>—|—/dZHW(CIJ,gZ—)—I—c.c.
2

To the low energy superpotential
[ 46 Wen(@)

Coupling constants g; as the vevs of chi-
ral superfields

¢

Wesr(®) depends only on g; , not on gj.

e Many classical symmetries on chiral su-
perfields and coupling constants.

e Even anomalous symmetries are useful
once one assigns charges to the dynami-
cal scale A appropriately.



e In the classical limit A — 0, Weg(P)
must approach Wiyee(P).
e If one takes some coupling g; — 0 ,
Wesr Should smoothly become Wiyee-

J
Wesr does not contain negative powers
of A and g;.

Strong constraint for possible terms in
Werr(®),

fixing the form completely in some simple
cases .

SU(N¢) SYM with Ny < N pairs of quarks
Q; and Q;.
e Gauge invariants are

T;; = Q;Qj-
® Wiree = m;;1;; as the bare superpo-
tential
o SU(Ny)xSU(Nyg) flavor symmetry on
quarks and antiquarks.



e R-charges:

9 Q Q m W,
R-charge |1 0 0 2 1
e T he anomaly from

q — e_iqbq, A — e+z¢)\,

leads to:

0 — 0+ 2(Ne — Nf)o.

Because

_ 3N.—N 8w2
ASNC Nf ~ AO f exp <—? —I— ’LH) )
0

the R-charge of A*Ve™Nsis 2(N. — Ny) .

U

+ my; 154,
N——

/!
the coeff. is fixed by m — 0 limit.

ASNC—Nf> 1/(Nc—Ny)

Wefr = C
eff ( det TZJ



e [ he result can be summarized as
Weafr = Wh.po. + Wi,
eff P. tree

non-perturbative,
independent of
coupling constants

e Various other models have this form.
ILS proposed this linearity as an organiz-
iINng principle.

e However, symmetry arguments are not
always strong enough.

e Consider N =1 SU(N.) SYM with one
adjoint &.

e The R-charge of A is zero .

e Introduce the bare superpotential
mtr ®2/2.

e Symmetry alone cannot exclude the cor-
rections of the form mA?Z2.



3. Brief Review of DGLVZ |

1. Introduce an external gauge super-
field. In particular, introduce a space-
time constant gaugino.

2. Perturbatively integrate out the mat-
ter superfields. Wpert(S)

3. Make the gauge superfield dynamical.
Werr(S) = Wyy (S) +Whpert(S)

dynamical effect
from the gauge superfield




m

(PD) = ————
p + mm + Wm,
where
p : bosonic momentum,
we : field strength superfield,
o - fermionic momentum.

Integration of loop momenta:

l d4pa 2
[1( [ gt [ e
a=1 ( ﬂ-)

—> Every [-loop diagram carries a factor

of W,2 .

— If W4 = 0, no correction to F terms.

This is the Perturbative
Non-Renormalization Theorem!

What if W, # 07



e tr W™ is D-exact for m > 3, i.e. ~ zero
in the F terms. (CDSW)

e T herefore, Wesr IS a function of
wo = trW, and 3278 = tr WW,..

¢

To give non-zero requires at least [ index
loops.

e # of index loops h satisfies
h=10l+1—-—2 X genus.

A V
h=4 h =2

Only GENUS 0 diagrams contribute!

e Further tricks reveal the resulting Feyn-
man rules are the same as those of the
matrix models in the planar limit.



This introduces the Veneziano-Yankielowicz
term

S
(A: the dynamical scale of SQCD)
There are arguments against further corrections.

The total effective superpotential:
Werr(S) = Wvy (S) + Wpert(5).

e S is determined by the extremalization
OWesr/0S = 0.

e For Wiree = > 9;0;, the vevs are

(©) = 5 Wen(S(a:).9

1

_ n _ OWerr
dg; |s 0g; 0OS

S



4. ILS from DGLVZ |

e Introduce Wtree = Zgzoz.

e From DV, calculate Wggr and (Wipee) IN
Westr = Wh.p. + (Wtree)-

e Is Wy, p. independent of g; as a function
of A, g; and (O;) ? This is the linearity
principle.

We impose:
e Vector-like , 1.e. gauge-invariant mass
terms can be given to all fields.

e No U(1) factor left in low energy.

e Each gauge invariants O; is a polyno-
mial of F,’s.

e Either the R-charge of A vanishes, or
satisfies the Restriction (O) :

no dynamical constraints
among (Fg)
P({Fy),(F3),---) = 0.




(©) may sounds a serious restriction, but
please note:

Take for example Sp(N) SYM with 2Ng
fundamentals Q;.

N +1> Nf : NoO constraints.
N +1 = Nf : A dynamical constraint

PF(Q;Q,) = A*N7,
but in this case the R-charge of A is zero.

N +1<KL Nf : Classical constraints

Pf(Q;Q;) = 0,
but all lifted dynamically.

e All satisfy the restriction we imposed.

e The SU(Ny) case is quite similar.



We show Wpp. = (N¢e — Nf)S.
° VvV, = E + L, =1
#(vertices) #(propagators) F£(loops)

e V, EE and L can be counted by

g;0/0g;, —m;0/0m;, S90/0S
e Hence for each diagram D,
9]

0 0
1—S— | D = E : § .— | D,
( BS) ( mzc‘?mi + 93 ng>

7

the contrib. of D to (Wiree)

(Wiree) = (1-5,) Y. D

modulo subtlety at one-loop.

(YT, hep-th/0211189)

Because = — (W D) =0,
. 55 BS( vy + ) D)

l.e.

e Hence Wn_p_ = (NC — Nf)S.

Note N.— Ny is half the R-charge of AP



We show S is independent of g; when
expressed as a function of A and (O;).

()
The same as inquiring whether S does
not change when g;’s are varied as long
as {O;) remain fixed

by the factorization,
the same as fixing (Fy)

<DERIVATION>

e From §(0Wes/0S) = 0,

O2W, O2W,
. eff(SS _ Z‘s)‘i eff.
0S0S - o\;0S

e Hence §(F;) = ), 6\;G;; where

G — O*Werr  0*Werr0°Werr /0*Wesr
Y ax0N;  OX0S 9SoN;/ 9S8S
_ 9{0;) 0(0;) 0*Wesr 0°Wesr

OA; S 0Sox;/ 9S0S




e From factorization,

90,
Gij = <—8Fa>Gaj°
Hence
90,

() = (93l ) G

e Similarly, one obtains

O Wesr
a9S0S

00; \ O(Fua)
BFa>) oS

58 = <5>\i<

e The restriction (Q) ensures that the
rank of G;; is maximal.

Thus, §(F;) = 0 implies §S = 0.



e If the R-charge of A vanishes, Wp p. =0
from Step 1.

e If it does not vanish, by the restriction
(Q) and Step 2, Wh.p. « S is independent
of the coupling constants.

This is the linearity principle. Q.E.D.

When the rank of G;; is not maximal, G;;
contains the info of the dynamical con-
straints. Further, G;; can be computed
perturbatively!

]

U

The dynamical constraints, if any, can be
readily studied in this approach.



5. Conclusions |

e \\\Ve derived the ILS linearity principle in
the framework of Dijkgraaf-VVafa

Directly related to this work:
e Lifting the restriction ()

More generally, interesting directions around
the DV framework are:

e Direct topological twisting of N/ = 1
SYM theories

e Extending to matter superfields not in

a vector-like representation.



