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1. Introduction

the Dijkgraaf-Vafa proposal

Duality between
d = 4,N = 1 SYM theories
and (old) matrix models:

• Gauge Theory : Nc Finite and Fixed
the bare superpotential Wtree(Φ)

⇓
the effective superpotential Weff(S)

(Φ: adjoint matter, Nc ×Nc
S: gaugino condensate (1/32π2) trW αWα)

• Matrix Model : Planar Limit
the action Wtree(Φ)

⇓
the free energy F(S)

(Φ: M ×M matrix, S: ’t Hooft coupling)
M →∞ with S fixed

• The correspondence is

Weff(S) = Nc
∂F

∂S
and it was conjectured to be EXACT



First Indication — Factorization

? Matrix Model Side

• Consider a diagram with V vertices,

E propagators, h index loops with Eu-

ler number χ

V − E + h = χ

• (Propagators)−1 and couplings ∝ M/S

⇓

diagram ∝Mh
(

M

S

)V−E

= MχSV−E

In the planar limit M → ∞, planar di-

agrams dominate and correlation func-

tions factorize:(E = 5, V = 4)

h = 5 ; M4S2

h = 3 ; M2S2



?Gauge theory side

VEVs of the lowest components of gauge

invariant chiral superfields factorize:

〈Φ1(x)Φ2(y)〉 = 〈Φ1(x)〉〈Φ2(y)〉

It is because

• ∂µΦ1(x) = {D̄, [D, Φ1(x)]} is D̄-exact.

• Hence,

∂µ〈Φ1(x)Φ2(y)〉 = 〈{D̄, [D, Φ1(x)]}Φ2(y)〉

= 〈[D, Φ1(x)]{D̄, Φ2(y)}〉

= 0

• Next, Take |x− y| → ∞

• Finally use the Cluster Property.



Stringy ideas behind the proposal

DV arrived this proposal

by chasing the following dualities:

N = 1 SYM
!!!
←→ matrix model

∩ ‖
D5 wrapped on B brane on

S2 in CY
twist
=⇒ S2 in CY

largeN
dual l l largeN

dual

IIB on CY B model on CY

with flux in S3 twist
=⇒ with flux in S3



Checking the proposal

To calculate Weff(S), one usually com-

bines

• exact results (the Seiberg-Witten curve

or the Affleck-Dine-Seiberg superpoten-

tial ), which describe the system without

the deformation Wtree(Φ).

• the linearity principle of Intriligator-

Leigh-Seiberg, which tells the response

of the system to Wtree(Φ).

(more on this in section 2.)

Extending to the fundamental flavors

Weff(S) = Nc
∂Fsphere

∂S
+ Fdisk.

It is now known that diagrams with more

than two boundaries do not contribute.



Field-theoretic derivations of the proposal

By now, we have two derivations of the

conjecture:

• Dijkgraaf-Grisaru-Lam-Vafa-Zanon

By purterbatively integrating out the mat-

ter superfields in an external gaugino con-

densate

(more on this in section 3.)

• Cachazo-Douglas-Seiberg-Witten

By combining the generalized Konishi

anomaly relations and factorization of vevs

of chiral superfields

⇓
We can study the dynamics of N = 1

SYM systems using DV!

As an example, we showed from DV the

ILS linearity principle .



2. Brief Review of ILS

From the bare lagrangian

Lbare =

∫

d4θΦ†eV Φ+

∫

d2θW (Φ, gi)+c.c.

⇓
To the low energy superpotential∫

d2θ Weff(Φ)

holomorphy

Coupling constants gi as the vevs of chi-

ral superfields

;

Weff(Φ) depends only on gi , not on gi.

symmetry

• Many classical symmetries on chiral su-

perfields and coupling constants.

• Even anomalous symmetries are useful

once one assigns charges to the dynami-

cal scale Λ appropriately.



classical and perturbative limit

• In the classical limit Λ → 0 , Weff(Φ)

must approach Wtree(Φ).

• If one takes some coupling gi → 0 ,

Weff should smoothly become Wtree.

⇓
Weff does not contain negative powers

of Λ and gi.

Strong constraint for possible terms in

Weff(Φ),

fixing the form completely in some simple

cases .

Example.

SU(Nc) SYM with Nf < Nc pairs of quarks

Qi and Q̃i.

• Gauge invariants are

Tij = QiQ̃j.

• Wtree = mijTij as the bare superpo-

tential

• SU(Nf)×SU(Nf) flavor symmetry on

quarks and antiquarks.



• R-charges:
θ Q Q̃ m Wα

R-charge 1 0 0 2 1

• The anomaly from

q → e−iφq, λ→ e+iφλ,

leads to:

θ → θ + 2(Nc −Nf)φ.

Because

Λ3Nc−Nf ∼ Λ
3Nc−Nf
0 exp

(

−
8π2

g2
0

+ iθ

)

,

the R-charge of Λ3Nc−Nf is 2(Nc−Nf) .

⇓

Weff = c

(

Λ3Nc−Nf

det Tij

)1/(Nc−Nf)

+ mijTij
︸ ︷︷ ︸

↗

,

the coeff. is fixed by m→ 0 limit.



the linearity principle

• The result can be summarized as

Weff = Wn.p.
︸ ︷︷ ︸

non-perturbative,
independent of
coupling constants

+Wtree

• Various other models have this form.

ILS proposed this linearity as an organiz-

ing principle.

• However, symmetry arguments are not

always strong enough.

Another Example

• Consider N = 1 SU(Nc) SYM with one

adjoint Φ.

• The R-charge of Λ is zero .

• Introduce the bare superpotential

m trΦ2/2.

• Symmetry alone cannot exclude the cor-

rections of the form mΛ2.



3. Brief Review of DGLVZ

Strategy

1. Introduce an external gauge super-

field. In particular, introduce a space-

time constant gaugino.

2. Perturbatively integrate out the mat-

ter superfields. Wpert(S)

3. Make the gauge superfield dynamical.

Weff(S) = WVY(S)
︸ ︷︷ ︸

dynamical effect
from the gauge superfield

+Wpert(S)



the propagator

〈ΦΦ〉 =
m̄

p2 + mm̄ + W απα
where

p : bosonic momentum,
W α : field strength superfield,
πα : fermionic momentum.

Integration of loop momenta:

l∏

a=1

(
∫

d4pa

(2π)4

∫

d2πa

)

=⇒ Every l-loop diagram carries a factor

of Wα
2l .

=⇒ if Wα = 0, no correction to F terms.

This is the Perturbative

Non-Renormalization Theorem!

What if Wα 6= 0?



Origin of Planarity

• trW m
α is D̄-exact for m ≥ 3, i.e. ∼ zero

in the F terms. (CDSW)

• Therefore, Weff is a function of

wα = tr Wα and 32πS = trW αWα.

;

To give non-zero requires at least l index

loops.

• # of index loops h satisfies

h = l + 1− 2× genus.

l = 3 l = 3
∧ ∨

h = 4 h = 2

Only GENUS 0 diagrams contribute!

• Further tricks reveal the resulting Feyn-

man rules are the same as those of the

matrix models in the planar limit.



Making the vector superfield dynamical

This introduces the Veneziano-Yankielowicz

term

WVY = NcS(1− log
S

Λ3
).

(Λ: the dynamical scale of SQCD)

There are arguments against further corrections.

The total effective superpotential:

Weff(S) = WVY(S) + Wpert(S).

• S is determined by the extremalization

∂Weff/∂S = 0.

• For Wtree =
∑

giOi, the vevs are

〈Oi〉 =
∂

∂gi
Weff(S(gi), gi)

=
∂Weff

∂gi

∣
∣
∣
∣
S

+
∂S

∂gi

∂Weff

∂S

∣
∣
∣
∣
gi

=
∂Weff

∂gi

∣
∣
∣
∣
S
.



4. ILS from DGLVZ

• Introduce Wtree =
∑

giOi.

• From DV, calculate Weff and 〈Wtree〉 in
Weff = Wn.p. + 〈Wtree〉.

• Is Wn.p. independent of gi as a function

of Λ , gi and 〈Oi〉 ? This is the linearity

principle.

Restriction on the matter rep.

We impose:

• Vector-like , i.e. gauge-invariant mass

terms can be given to all fields.

• No U(1) factor left in low energy.

• Each gauge invariants Oi is a polyno-

mial of Fa’s.

• Either the R-charge of Λ vanishes, or

satisfies the Restriction (♥) :

no dynamical constraints

among 〈Fa〉
P (〈F1〉, 〈F2〉, · · · ) = 0.



cf.

(♥) may sounds a serious restriction, but

please note:

Take for example Sp(N) SYM with 2Nf

fundamentals Qi.

N + 1 > Nf : No constraints.

N + 1 = Nf : A dynamical constraint

Pf〈QiQj〉 = Λ2Nf ,

but in this case the R-charge of Λ is zero.

N + 1 < Nf : Classical constraints

Pf〈QiQj〉 = 0,

but all lifted dynamically.

• All satisfy the restriction we imposed.

• The SU(Nf) case is quite similar.



Step 1.

We show Wn.p. = (Nc −Nf)S.

• V︸︷︷︸
#(vertices)

− E︸︷︷︸
#(propagators)

+ L︸︷︷︸
#(loops)

= 1

• V , E and L can be counted by

gj∂/∂gj, −mi∂/∂mi, S∂/∂S

• Hence for each diagram D,
(

1− S
∂

∂S

)

D =

(
∑

mi
∂

∂mi
+
∑

gj
∂

∂gj

)

D,

︸ ︷︷ ︸

the contrib. of D to 〈Wtree〉
i.e.

〈Wtree〉 =

(

1− S
∂

∂S

)
∑

D

modulo subtlety at one-loop.

(YT, hep-th/0211189)

• Because
∂Weff

∂S
=

∂

∂S
(WVY +

∑

D) = 0,

〈Wtree〉 =
∑

D + S
∂WVY

∂S
.

• Hence Wn.p. = (Nc −Nf)S.

Note Nc−Nf is half the R-charge of Λβ



Step 2.

We show S is independent of gi when

expressed as a function of Λ and 〈Oi〉.
⇑

The same as inquiring whether S does

not change when gi’s are varied as long

as 〈Oi〉 remain fixed
︸ ︷︷ ︸

by the factorization,
the same as fixing 〈Fa〉

.

<DERIVATION>

• From δ(∂Weff/∂S) = 0,

−
∂2Weff

∂S∂S
δS =

∑

i

δλi
∂2Weff

∂λi∂S
.

• Hence δ〈Fj〉 =
∑

i δλiGij where

Gij =
∂2Weff

∂λi∂λj
−

∂2Weff

∂λi∂S

∂2Weff

∂S∂λj

/∂2Weff

∂S∂S

=
∂〈Oi〉

∂λj
−

∂〈Oi〉

∂S

∂2Weff

∂S∂λj

/∂2Weff

∂S∂S
.



• From factorization,

Gij = 〈
∂Oi

∂Fa
〉Gaj.

Hence

δ〈Fj〉 =

(

δλi〈
∂Oi

∂Fa
〉

)

Gaj

• Similarly, one obtains

−
∂2Weff

∂S∂S
δS =

(

δλi〈
∂Oi

∂Fa
〉

)
∂〈Fa〉

∂S

• The restriction (♥) ensures that the

rank of Gij is maximal.

Thus, δ〈Fi〉 = 0 implies δS = 0.



Result

• If the R-charge of Λ vanishes, Wn.p. = 0

from Step 1.

• If it does not vanish, by the restriction

(♥) and Step 2, Wn.p. ∝ S is independent

of the coupling constants.

This is the linearity principle. Q.E.D.

N.B.

When the rank of Gij is not maximal, Gij

contains the info of the dynamical con-

straints. Further, Gij can be computed

perturbatively!

⇓
The dynamical constraints, if any, can be

readily studied in this approach.



5. Conclusions

Summary

•We derived the ILS linearity principle in

the framework of Dijkgraaf-Vafa

Future work

Directly related to this work:

• Lifting the restriction (♥)

More generally, interesting directions around

the DV framework are:

• Direct topological twisting of N = 1

SYM theories

• Extending to matter superfields not in

a vector-like representation.


